Tag Archives: chemistry

Downstream processing: An Intro

Downstream processing is the process of making new medicines and biosynthetic products from natural resources. These natural resources can be anything from animals to plants and even the bio-waste. The process of downstream processing includes the proper management of other resources as well like water management.

Uses of downstream processing:

  •    To make antibiotics:

Downstream processing is very useful to make the antibiotics as they use biological and natural resources to make these medicines.

  •    To make hormones:

Once upon a time hormones were considered only to be produced by the human body naturally. By using downstream processing, it is now possible to make very useful hormones like insulin and human growth hormones.

  •    Vaccines:

Vaccines made by the natural resources are proved to be more effective and do not have side effects.

  •    Flavors:

This is a new concept in the biotechnology field. But it surely is a good way to make flavors. The artificial flavors were sometimes considered to be harmful but the flavors mad by downstream processing by using natural resources are safe.

The downstream processing comes under the specialization field of biotechnology and chemical engineering. This process has significantly changed the medical industry as they do not have to make new medicines from non-biological compounds. That process was lengthy and it further created by products like polluted water.

This process includes various processes in it. It takes four steps to get the final product through downstream processing.

  1.    Capture:

This includes the process of removing the colloidal material from the main solution.

  1.    Product isolation:

Product isolation is the removal of those materials whose properties differ from the main solution.

  1.    Intermediate purification:

This process includes the removal of bulk contaminants such as host cells and other types of viruses.

  1.    Product polishing:

Product polishing is the refinement of the final product until they become the desired product.

This was the introduction to the downstream processing. There will be a series of articles about the various processes include in the downstream processing.

Hope this articles helps you.

Organic Chemistry and Synthetic Organic Chemistry

The differences between Organic Chemistry and Synthetic Organic Chemistry are small, but by no means insignificant. At it’s most base and simple form, Organic Chemistry describes the overall study of the properties and structures of organic compounds, and the effects had on them by various sources. While the study referred to as Synthetic Organic Chemistry generally talks more specifically about finding ways to create compounds using existing methods.

 

This can either mean creating brand new compounds or molecules that have never existed before (but have been theorized to have desirable uses and/or applications) or simply taking an existing compound or molecule and trying to find a more efficient way to create it so that it can be used more readily.

 

More Details

 

Of course saying that those are the only two uses of synthetic organic chemistry is almost insulting to the study, but they are the two main focuses, and will therefore be the focus here. Since synthetic organic chemistry is in fact a subset of the larger umbrella of “Organic Chemistry” people usually wind up studying a bit of both. However, it is theoretically possible to study organic chemistry and only have the most passing familiarity with synthetic organic chemistry.

 

So it’s not that it’s a different science, per-se, it just simply uses focuses one general aspect of the science. The building of compounds. It might be a bit boring to some people, but to others this process is endlessly fascinating. So, to clarify, this is the process of:

 

1: Mixing Compounds or Molecules

2: Adding and Repeating as Needed

3: Testing the Results Under Various Conditions

4: Making a Viable, Usable Entity at the Other End

 

This is a wonderful, useful science that is helping drive the modern world forward as we create new and exciting molecules. Or simply better ways of making stuff we already know how to make, making them more available for people and the public in general.